Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor.
نویسندگان
چکیده
In the biosynthetic gene cluster of the aminocoumarin antibiotic clorobiocin, the small ORF cloY encodes a 71 aa protein which shows significant sequence similarity to mbtH from the mycobactin biosynthetic gene cluster of Mycobacterium tuberculosis. mbtH-like genes are frequently found in the biosynthetic gene clusters of peptide antibiotics and siderophores, but their function has remained enigmatic. In a recent publication it has been suggested that these genes may have no function for secondary metabolite biosynthesis. An in-frame deletion of cloY in the clorobiocin cluster has now been carried out. When the modified cluster was expressed in the heterologous host Streptomyces coelicolor M512, clorobiocin was still formed. However, when the two further mbtH-like genes from elsewhere in the host genome were inactivated as well, clorobiocin formation was reduced dramatically. Complementation with cloY or with any of three other mbtH-like genes restored clorobiocin formation. This is the first report proving the requirement of an mbtH-like gene for secondary metabolite formation, and the first proof that different mbtH-like genes can functionally replace each other. Feeding of an mbtH-defective triple mutant strain with an intact 3-amino-4,7-dihydroxy-coumarin moiety restored antibiotic production, showing that cloY is specifically required for the formation of this moiety of the clorobiocin molecule.
منابع مشابه
Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters.
A method was developed for the heterologous expression of biosynthetic gene clusters in different Streptomyces strains and for the modification of these clusters by single or multiple gene replacements or gene deletions with unprecedented speed and versatility. Lambda-Red-mediated homologous recombination was used for genetic modification of the gene clusters, and the attachment site and integr...
متن کاملResistance genes of aminocoumarin producers: two type II topoisomerase genes confer resistance against coumermycin A1 and clorobiocin.
The aminocoumarin resistance genes of the biosynthetic gene clusters of novobiocin, coumermycin A(1), and clorobiocin were investigated. All three clusters contained a gyrB(R) resistance gene, coding for a gyrase B subunit. Unexpectedly, the clorobiocin and the coumermycin A(1) clusters were found to contain an additional, similar gene, named parY(R). Its predicted gene product showed sequence ...
متن کاملNovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis.
The biosynthetic gene cluster of the aminocoumarin antibiotic novobiocin contains two putative regulatory genes, i.e. novE and novG. The predicted gene product of novG shows a putative helix-turn-helix DNA-binding motif and shares sequence similarity with StrR, a well-studied pathway-specific transcriptional activator of streptomycin biosynthesis. Here functional proof is provided, by genetic a...
متن کاملIdentification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2).
SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification ...
متن کامل2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining.
All of the genetic elements necessary for the production of the antibiotic methylenomycin (Mm) and its regulation are contained within the 22-kb mmy-mmf gene cluster, which is located on the 356-kb linear plasmid SCP1 of Streptomyces coelicolor A3(2). A putative operon of 3 genes within this gene cluster, mmfLHP, was proposed to direct the biosynthesis of an A-factor-like signaling molecule, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 153 Pt 5 شماره
صفحات -
تاریخ انتشار 2007